
Expert Answers in a Flash: 
Improving Domain-Specific QA



Retrieval

There are different types of framework along which the question answering models have been developed namely:
� Retriever and Reader � Retriever-only � Generator-only.

Question Answering

� Quantization � Pruning[25] � Distillation[22] � Model Architecture

Literature Review



different model performance with passage based approach
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different model performance with Sentence based approach

A. Task Description

B. In Depth Approaches with Results

Paragraph Retrieval Task

1. Phrase vs Passage based approaches



3. Reader-Guided Passage Reranking

Significantly better QA performance can be achieved when the retrieval results are improved. Usual methods 
follow the R2(Retriever-Reader) or R3( Retriever-Reranker-Reader) frameworks. 

to rerank based on the reader's/QA model’s inferences which significantly improves the Top 1 
retrieval accuracy and performance. We take a phrase based approach and divide the passages into sentences. 
Each sentence is then encoded. We narrow down the list of plausible sentences using cosine similarity. Now, to 
rerank the sentences, we concatenate them into a new paragraph which is then fed in to the reader model. The 
answer returned by the model is traced back to the original sentence and hence the original passage, hence 
completing the retrieval and the QA step simultaneously while drastically improving scores and efficiency.

We propose a novel approach 
(Refer Flowchart 1) 

4. Theme-Based Fine Tuning
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A. Task Description

B. In-Depth approaches with results

Question Answering Task

5. Siamese Network-Based Fine Tuning

1. Pretrained Model Analysis

The Limitation of using these pretrained models is that most of them are trained on SQuAD2.0 data so they 
might not perform well on other themes.

Also, there is still a significant inference time when it comes to answering Questions with large knowledge bases. 
To mitigate these problems we used the below approach.

2. Static Quantisation



3. Response Based Knowledge Distillation
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4. Model Pruning & Dynamic Quantisation



Future Work

Improving Answerability

Exploiting other similarity measures

Domain Adaptation

Drive Link

Please follow this link for notebooks, data and models (https://drive.google.com/drive/folders/1Qlr504-
eh8yPMF6juHJpvaqXPTqO0m1D?usp=sharing)
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