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Introduction

- Importance of investigating vibrating systems in structural dynamics
- Necessity for sophisticated modeling, especially with Geometrically Consistent
Tuned Mass Dampers (GTMDs)

- Research focus on precise parameter and state estimation

Key Objectives

- State and parameter estimation of systems on Riemannian Manifolds
- Optimization and parameter estimation of Pendulum Cart System on SO(3)
Manifold

- Mathematical modeling of Geometrically Consistent Pendulum



Background

Vibrating Structures

- Traditional modeling often relies on Euclidean spaces
which are the inherent complex and estimation still
has significant error

- profound significance in earthquake engineering and

structural design

Tuned Mass Dampers

Pendulum tuned mass dampers (PTMDs) have
emerged as a prominent solution for mitigating
structural vibrations induced primarily by dynamic
forces such as wind.

- Time domain modal parametric identification of
natural frequencies, mode shapes, and modal
damping ratios of structures equipped with PTMDs
can help us model Geometrically consistent Tuned

Massed Damper



Data Generation

Used Geometric Ito-Taylor 1.5 method for simulating stochastic differential equations
we provide the dynamic equation for a chaotic pendulum in the Special Orthogonal

Group SO(3) manifold,

JTew=—w+xlTewt+u (1.1)
Where:
e [ is the moment of inertia matrix.
e w represents the angular velocity vector.
e ( is the time derivative of the angular velocity.

e v represents the control input, which incorporates the effects of the tuned mass

damper and any external forces or disturbances.




Manifolds

This research focuses on precise parameter and state estimation, employing
Kalman filters on Riemannian manifolds, specifically in the context of Lie
Algebra. The aim is to address gaps in literature on parameter and state

estimation for vibrating structures with GTMDs.

Fig. 2.1 Manifolds (a) Hypersphere (b) Torus




Building Foundation

A tensor is an object that is invariant under a change of coordinates and has

components that change in a special predictable way under the change of coordinates.

e Forward Transformation (F):
Azt dr’,
T =7="Tu
S A

e Backward Transformation (B):
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such that F- B =1T.

Co-Vectors is A function that takes a vector and produces a scalar is called a co-vector.

Spaces of co-vectors are called dual spaces.

Metric Tensor It is an additional structure on a manifold M in the field of differential
geometry that allows for the definition of distances and angles, much like the inner

product on an Euclidean space does




Geodesics

The straightest possible path we can draw on surfaces between two points is called a

geodesic.
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Fig. 2.2 Geodesic between two points on Sphere




Christoffel Symbol

The straightest possible path we can draw on surfaces between two points is called a

geodesic.
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Now, Tangential Component = (), on expanding the above equation we get,
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Here u' and u' are the basis vectors and R is the position vector. And g'* is the

component of inverse metric tensor.
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Fig. 2.4 Exponential Mapping and Logarithmic Mapping on surface of S?
manifold




Lie Group and Lie Algebra

Lie group is a smooth manifold that also carries a group

structure whose product and inversion operations are Lie group

smooth as maps of manifolds

2.3.1 Group Axioms

I. Closure: If a.b € G. then ¢(a.b) € G.

Lie algebra
2. Associative: If a.b.c € G, then ¢(a. ¢(b. ¢)) = @(d(a.b). c).

Fig. 2.5 Working of Lie Groups and Lie Algebra
3. Identity: If o £ (G, then there exists e € & such that ¢(a,e) = ¢(e,a) = a.

4. Inverse: If a € (7, then there exists a unique element a=! € & such that é{a.a™!) =

.;:r{a‘l.a] = g.
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SO3 Group

The group SO(3) is made up of rotation matrices or special
orthogonal matrices in 3D space that are subject to matrix
multiplication. In all groups SO, inversion and composition
are accomplished through transposition and product (n).
The lie algebra of the group is defined by angular velocities

wX, WYy, WZ.

Exponential Map:

] =

R = exp([w]f) € SO(3), where R is the rotation matrix.

R =TI+ [w]sin(#) + [w]*(1 — cos(#))

Logarithm:
1

O] = Log(R)O(R — RT) 5

Where,

0 — cos-! (trace(R) - 1)
a 2




Kalman Filter

The Kalman filter is a recursive algorithm that estimates the state of a dynamic system from a
series of noisy measurements

State Prediction

The prediction of the state is given by the system dynamics:

£k|k—1 = f(i':c—uk—h Ug—1)

Error Covariance Prediction

The error covariance matrix is predicted using the Jacobian of the state transition function:

P = Ak—lpk—l|k—1A;1—_1 +Qr1
Measurement Prediction

The predicted measurement is obtained using the measurement model:

Zje—1 = M Tppp—1)

Kalman Gain Calculation

The Kalman gain is computed to determine the weight of the measurement in the state

correction:

Ky = Pklk—lH;(Hk-Pklk—lH; + Ry) ™t

where Hj. is the Jacobian of the measurement function, and R} is the measurement noise

covariance.
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Simulation
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Fig. 3.1 Trajectory on S03 Manifold
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