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Chapter 1

Introduction

In the realm of structural dynamics, the investigation of vibrating systems has emerged as

a pivotal field, providing essential insights into the understanding of structural behavior and

resilience against external forces. The intricacies of these systems necessitate a sophisticated

modeling approach, particularly when dealing with structures equipped with geometrically

consistent tuned mass dampers (GTMDs). This research ventures into the challenging

domain of estimating parameters and states of vibrating structures adorned with GTMDs

with precision.

In the contemporary era, the application of dynamical systems has become increasingly

relevant, serving as a lens through which we analyze both natural phenomena, such as

seismic events, and technological innovations. Traditional modeling often relies on Eu-

clidean spaces; however, the inherent complexity of certain systems demands a nuanced

approach—one that incorporates the geometry within which these structures evolve. Man-

aging kinematic constraints becomes paramount, and this work resides at the intersection of

applied mathematics, theoretical sciences, and mechanical control, navigating the intricate

landscape of dynamical systems on Riemannian manifolds.

The study embarks on a mission to unravel the dynamics of vibrating structures with

GTMDs, an area of profound significance in earthquake engineering and structural design.
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Drawing inspiration from the complexity of these systems, the thesis employs Kalman filters

as a foundational tool for parameter and state estimation on Riemannian manifolds.

While existing literature has made substantial contributions to the understanding of dy-

namical systems on manifolds, certain aspects, particularly related to parameter and state

estimation in the context of vibrating structures with GTMDs, remain underexplored. This

work seeks to bridge this gap by employing Kalman filters to refine the estimation process,

emphasizing their application in the realm of Lie Algebra and Riemannian manifolds. Com-

parative analyses with existing numerical schemes further validate the effectiveness of the

proposed approaches.

By unraveling the intricacies of parameter and state estimation in vibrating structures

equipped with GTMDs on Riemannian manifolds, this thesis contributes to the broader

understanding of structural dynamics. The incorporation of Kalman filters within the

context of Lie Algebra not only enhances the accuracy of estimation but also paves the

way for robust methodologies, thereby advancing the field and offering novel perspectives

on the analysis of such dynamic systems.

1.1 Introduction to Key Concepts and Literature Survey

Structural vibrations pose significant challenges in the field of civil engineering, requiring

innovative solutions to mitigate their effects on the integrity and safety of buildings and

other structures. One such solution is the application of Tuned Mass Dampers (TMDs),

with a specific focus on Pendulum Tuned Mass Dampers (PTMDs). This literature review

explores the state of the art in modal parameter estimation of structures equipped with

PTMDs, along with advancements in the field of Riemannian manifolds and their potential

applications in structural dynamics.

Pendulum tuned mass dampers (PTMDs) have emerged as a prominent solution for

mitigating structural vibrations induced primarily by dynamic forces such as wind. These

devices have found practical application in various full-scale structures, significantly en-
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hancing their ability to withstand environmental forces. The works of A. J. Roffel and

Sriram Narasimhan [1] have addressed the need for comprehensive methodologies to esti-

mate modal parameters while PTMDs are in service. In their paper, they present a method

for time domain modal parametric identification of natural frequencies, mode shapes, and

modal damping ratios of structures equipped with PTMDs. This research acknowledges the

crucial role of PTMDs in structural dynamics, emphasizing their adaptive passive nature

with mechanisms to adjust auxiliary frequency and damping.

One key observation from the studies of Roffel and Narasimhan [1] is the inherent

uncertainty associated with estimating the first modal damping. This uncertainty partly

stems from the frequency-dependent behavior of the dampers. Interestingly, this uncer-

tainty is notably reduced for the second mode, suggesting that the damper exhibits less

frequency-dependent behavior at higher frequencies. This insight underscores the complex-

ity of PTMDs and highlights the importance of a precise and robust estimation framework

for modal parameters, especially in cases involving varying dynamic conditions.

Parallel to the advancements in structural dynamics, the field of differential geometry

has gained attention in modeling non-linearities by confining parts of the model to Rie-

mannian manifolds. The work of Søren Hauberg, François Lauze, and Kim Steenstrup

Pedersen[2] introduces a novel algorithm that generalizes the unscented transform and the

unscented Kalman filter for Riemannian manifolds. This pioneering research provides a

generic optimization framework for these domains and demonstrates its robustness and

convergence across various applications. In particular, the Riemannian unscented Kalman

filter (UKF) is noted for producing smoother motion estimates, making it a promising tool

for modeling complex structural vibrations with improved accuracy.

Building on this, the paper by Tripura, Panda, and Hazra [3], extends the horizon

of real-time modal identification techniques. Their work introduces a novel approach that

leverages first-order error-adapted eigen perturbation to enhance the accuracy and efficiency

of real-time modal identification in vibrating structures. By incorporating differential ge-
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ometry concepts from Pennec [4] into the identification process, this research represents an

innovative step towards addressing the challenges posed by dynamic structural behavior.

1.2 Objective

The Study in this paper is carried out with the following objectives in mind

1. State and parameter estimation of systems evolving on Riemannian Manifolds, Eg:

Chaotic Pendulum (3D Pendulum which has large swing angle) and Passive and

Semi-Active TMD (Tuned Mass Dampers).

2. Optimisation and Parameter estimation of Pendulum Cart System evolving on SO(3)

Manifold.

3. Mathematically model Geometrically consistent pendulum should capture all the dis-

placements and rotations (including 3 translations, 3 rotations, and interaction cou-

pled displacement).

1.3 Data and Methods

In this section, we outline the data generation process for simulating structural vibrations

equipped with geometrically consistent tuned mass dampers (TMDs) over a manifold using

the Geometric Ito-Taylor 1.5 method introduced by Panda and Hazra [5]. Additionally,

we provide the dynamic equation for a chaotic pendulum in the Special Orthogonal Group

SO(3) manifold, which serves as the foundation for our simulations.

1.3.1 Data Generation Using Geometric Ito-Taylor 1.5 Method

The Geometric Ito-Taylor 1.5 method is a powerful numerical technique for simulating

stochastic differential equations, making it well-suited for modeling dynamic systems with

uncertainty. In our study, we employ this method to generate simulated data representing
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the behavior of structures equipped with geometrically consistent tuned mass dampers.

The following steps outline the data generation process:

Dynamic Equation for Chaotic Pendulum on SO(3) Manifold

To simulate the behavior of a structure with a chaotic pendulum equipped with a geo-

metrically consistent tuned mass damper, we first need to establish the dynamic equation

governing the system. The dynamic equation for a chaotic pendulum on the SO(3) manifold

can be represented as follows:

I • ω̇ = −ω ∗ I • ω + u (1.1)

Where:

• I is the moment of inertia matrix.

• ω represents the angular velocity vector.

• ω̇ is the time derivative of the angular velocity.

• u represents the control input, which incorporates the effects of the tuned mass

damper and any external forces or disturbances.

Numerical Integration with Geometric Ito-Taylor 1.5

We use the geometric Ito-Taylor 1.5 method to numerically integrate the dynamic equation

over time. This method provides an accurate representation of the system’s behavior,

accounting for both deterministic and stochastic components. The numerical integration

process involves discretizing the time domain and updating the state variables (angular

velocity and orientation) at each time step.
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Incorporating Stochastic Elements

To account for uncertainties and external disturbances in real-world scenarios, we introduce

stochastic elements into our simulations. The geometric Ito-Taylor 1.5 method allows us

to model stochastic processes effectively. We include these stochastic components in the

control input to simulate the effects of uncertain forces or disturbances.

Parameterization of the PTMD

To achieve geometric consistency with the tuned mass damper, we parameterize the PTMD’s

characteristics within the control input u. This includes adjusting the auxiliary frequency

and damping properties of the PTMD as per the design requirements.

Simulation Output

The output of the simulation provides time-series data representing the structural vibra-

tions of the system, including the motion of the pendulum, the response of the PTMD, and

any other relevant parameters of interest.

By following this data generation process, we can simulate the behavior of structures

equipped with geometrically consistent tuned mass dampers under various conditions, al-

lowing us to investigate modal parameter estimation and structural response in a controlled

and repeatable manner.

6



Chapter 2

Background

In this chapter, we will explore the mathematical concepts needed to understand the Pa-

rameter and State Estimation of random state variables of vibrating structures. We’ll start

with Deterministic and Stochastic Dynamics in Euclidean Space before delving into Basic

Manifold theory. Then, we’ll learn how to formulate dynamics in manifolds and then study

applying the filters for estimation on Manifolds.

2.1 Lagrangian and Hamiltonian Dynamics on Rn

The Lagrangian function, denoted as L : TRn → R1, is a function that takes the configu-

rations (generalized coordinates) and their time derivatives as inputs and returns a scalar

value. It is commonly used in the framework of Lagrangian mechanics to describe the

dynamics of a physical system.

Mathematically, the Lagrangian function can be expressed as the difference between

the system’s kinetic energy and potential energy, both of which are functions of the con-

figurations. The kinetic energy is expressed in terms of the configurations and their time

derivatives, while the potential energy is expressed solely in terms of the configurations.
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In equation form, the Lagrangian function can be written as:

L(q, q̇) = T (q, q̇)− V (q) (2.1)

where:

1. L represents the Lagrangian function.

2. q denotes the configurations (generalized coordinates) of the system.

3. q̇ represents the time derivatives of the configurations.

4. T (q, q̇) is the kinetic energy of the system, which is a function of the configurations

and their time derivatives.

5. V (q) is the potential energy of the system, which is a function of the configurations.

The Lagrangian function plays a crucial role in Lagrangian mechanics, as it provides a

concise and elegant formulation for deriving the equations of motion of a physical system.

By applying the principle of least action, known as Hamilton’s principle, the equations of

motion can be derived by minimizing the action functional associated with the Lagrangian

function.

From this, using the Hamilton’s Variational Principle, the Euler-Lagrange Equation can

be derived. The Euler-Lagrange Equation is given by:

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= 0. (2.2)

This gives us the Equation of Motion of the system under consideration.

We also look at the Hamiltonian Formulation as it helps us in proving the symplectic

nature of our numerical scheme[6].

In systems where there is no randomness or uncertainty involved, the dynamics can be

described using the Hamiltonian formalism. In this framework, the Hamiltonian and the
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canonical equations play a key role in determining the system’s behavior.

The Hamiltonian, denoted as H̃(q, p), is a function defined on the phase space T ∗ Rn

which consists of the generalized coordinates q and their corresponding momenta p.

H̃(q, p) = p · q̇ − L(q, q̇)
∣∣∣
p= ∂L

∂q̇

(2.3)

dq

dt
= −∂H̃

∂p
,

dp

dt
=
∂H̃

∂q
(2.4)

Together, the Hamiltonian and the canonical equations provide a complete and deter-

ministic description of the dynamics in systems without any randomness or uncertainty.

By solving these equations, one can determine the evolution of the system’s coordinates

and momenta over time.

2.2 Manifolds

2.2.1 Definition

An abstract mathematical space known as a manifold has a structure that may be more

complex globally but is similar to the Euclidean geometry-described spaces locally. For in-

stance, the surface of the Earth is varied; although locally it appears flat when seen globally

from space, it is actually rounded. It is possible to ’glue’ various Euclidean spaces together

to create a manifold [7]. A circle S1 is an example of a manifold. Although a small portion

of a circle resembles a slightly bent portion of a straight-line segment, the circle, and the

segment are actually two different 1D manifolds. A segment of a straight line can be bent,

and the ends can be joined with glue to create a circle. Examples of 2D manifolds include

the surfaces of a sphere and a torus. Manifolds are crucial components of mathematics,

physics, and control theory because they enable the expression and comprehension of more

complex structures in terms of the well-known characteristics of simpler Euclidean spaces.

Take into consideration a set M that is a potential manifold. Any point x on M has

9



Fig. 2.1 Manifolds (a) Hypersphere (b) Torus

an associated Euclidean chart, which is given by a one-on-one mapping and plotted onto

the map θi : M → Rn, with an associated Euclidean image Vi = θi(Ui). Where Ui belongs

to M and Vi ∈ Rn.

2.2.2 Notations

There are numerous mathematical operations that arise in the analysis and operations of

manifolds. So, it is a good practice to fix all the notations which will be then used to

describe the mathematics in the further sections. M stands for a Riemannian manifold.

The tangent space to the manifold M at a point x ∈M is designated as TxM . The tangent

bundle denoted by the symbol TM is defined as TM := (x, v), x ∈M, v ∈ TxM . A manifold

is endowed with a local metric, this local metric defines the local norm ‖Vx‖ =
√

(V · V T )

for V ∈ TxM . The Riemannian gradient of a function ψ : R → M evaluated at any point

x ∈ M is denoted as gradxψ. The covariant derivative of a vector field w ∈ TM in the

direction of v ∈ TxM is denoted by ∇vw. We assume M to be endowed with a metric

connection. The parallel transport operator P (x → y) transports a tangent vector from

TxM → TyM . A manifold exponential map exp : TM → M is applied as expx(v). Its

inverse ’log’ is defined locally and is denoted by logy,x where y is the reference point y ∈M .

Given two points in the manifold M , the distance between them is denoted by d(x, y), which

10



is termed as the Riemannian distance between x and y. Now, having prepared a notation

for all the objects, now we define each of the terms individually.

Tensors

A tensor is an object that is invariant under a change of coordinates and has components

that change in a special predictable way under the change of coordinates. A tensor is a

collection of vectors and co-vectors combined together using the tensor product. Tensors

follow two transformation rules:

• Forward Transformation (F):

T ′ij =
∂x′i
∂xk

∂x′j
∂xl

Tkl

• Backward Transformation (B):

Tkl =
∂xi
∂x′k

∂xj
∂x′l

T ′ij

such that F ·B = I.

Co-Vectors

A function that takes a vector and produces a scalar is called a co-vector. Spaces of co-

vectors are called dual spaces. Co-vectors are invariant but co-vector components are not

invariant.

Metric Tensor

A metric tensor is an additional structure on a manifold M in the field of differential

geometry that allows for the definition of distances and angles, much like the inner product

on an Euclidean space does. A metric tensor on M is made up of metric tensors at

each point p ∈ M that vary smoothly with p, and a metric tensor at a point p ∈ M is a
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bilinear form defined on the tangent space at p. Metric Tensor is one of the most important

objects in Manifolds as it is the metric tensor that allows us to do mathematical operations,

such as finding the area, shortest distance, etc in manifolds. Consider the example of the

Pythagoras theorem, which finds us the hypotenuse distance in a triangle, but is only valid

in the orthonormal basis, so to do this in a manifold we require a metric tensor.

There are two methods available to define the metric tensor. These are:

1. Intrinsic Approach: The manifold is not defined by the intrinsic view as being en-

meshed in another space. Instead, it defines it using a metric or other relevant data

that informs us of curvature. This is also referred to as the “bug-eye view”.

2. Extrinsic Approach: A manifold’s extrinsic view is a portion of a larger space, typi-

cally a space with more dimensions. In that case, the manifold can be described by

an equation that indicates which points it takes up in the larger space. For instance,

the unit sphere is seen as a subset of Euclidean 3-space when viewed extrinsically.

This is also referred to as the “bird eye view”.

Mathematically, a metric tensor is the inner product of the basis vectors of the manifold

under consideration.

G =

gii gij

gji gjj


Where, the components of the metric tensor are the inner products of the basis vectors

in the intrinsic space, gij = ei · ej. This is the intrinsic definition where the manifold under

consideration is the sphere. In the case of extrinsic view, the metric tensor is defined as

follows:

G =


ex · ex ex · ey ex · ez

ey · ex ey · ey ey · ez

ez · ex ez · ey ez · ez


12



Where the e basis vectors are from the Euclidean space. Once this is established, we

can perform the operations on geometrical surfaces. The Metric Tensor is also called the

First Fundamental Form.

Geodesics

The straightest possible path we can draw on surfaces between two points is called a

geodesic. A curve that minimises length locally is a geodesic. It is, in effect, the path that

a particle that is not accelerating would take. The geodesics are lines that are straight

in the plane. The geodesics on the sphere are large circles. The notions of distance and

acceleration are impacted by the Riemannian metric, which also affects the geodesics in a

space [8].

In addition to having many other intriguing qualities, geodesics maintain a direction on

a surface. Any point on a geodesic arc has a normal vector that runs parallel to the surface

there. The Equation of Geodesic is given by:

d2uk

dλ2
+ Γkij

dui

dλ
· du

j

dλ
= 0

Fig. 2.2 Geodesic between two points on Sphere
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Christoffel symbols

The Christoffel symbols are a set of numbers that represent the metric link between math-

ematics and physics. A metric can be used to measure distances on surfaces or other

manifolds thanks to the metric connection, a specialization of the affine connection. The

Christoffel symbols give a concrete illustration of how coordinates on the manifold re-

late to (pseudo-)Riemannian geometry. Then, more ideas, such as parallel transportation,

geodesics, etc., can be expressed using Christoffel symbols. When there is some symme-

try between the coordinate system and the metric tensor, many of the Christoffel symbols

are zero. Below is a small derivation on how geodesic equation is obtained and the role

of Christoffel symbols in the geodesics of a surface. Note that the Einstein’s Summation

notation is followed. Methods to find the geodesic equation We need to solve the equation.

d2 ~R

dλ2
=
d2 ~R

dλ2 tangential
+
d2 ~R

dλ2 normal
(2.5)

Now, Tangential Component = 0, on expanding the above equation we get,

d2Rj

dλ2
=

(
d2uk

dλ2
+ Γkij

dui

dλ

duj

dλ

)
∂ ~R

∂uk
+ Lij

dui

dλ

duj

dλ
n̂ (2.6)

d2uk

dλ2
+ Γkij

dui

dλ

duj

dλ
= 0 (Geodesic Equation) (2.7)

Γkij =
∂2 ~R

∂uj∂uj
· ∂

~R

∂ul
glk (Christoffel Symbol) (2.8)

Here ui and uj are the basis vectors and R is the position vector. And glk is the

component of inverse metric tensor.
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Covariant Derivative

The covariant derivative in mathematics is a method of expressing a derivative along tan-

gent vectors of a manifold. In contrast to the method provided by a main connection on

the frame bundle, the covariant derivative is a manner of introducing and dealing with a

connection on a manifold through the use of a differential operator [17].

Derivation: Suppose we have a vector field A(xi) Writing in terms of basis vectors

dA = d(Aidei)

= (dAi)ei + Ai(dei)

=

(
∂Ai

∂xj
dxj
)
ei + Ai

(
∂ei

∂xj
dxj
)

=

(
∂Ai

∂xj
dxj
)
ei + AiΓkije

kdxj

=

(
∂Ai

∂xj
+ AiΓkij

)
ekdxj

Parallel Transport

Parallel transport is a technique used in geometry to move geometrical information along

a manifold’s rounded curves. If the manifold has an affine connection, one can move

the manifold’s vectors along curves while maintaining their parallelism with regard to the

connection. Thus, the parallel transport for a connection provides a means of connecting

the geometries of close-by points, or in certain ways moving the local geometry of a manifold

along a curve. There may be other parallel transport concepts, but this definition only refers

to one method of joining the geometries of points on a curve. In actuality, parallel transport

is the infinitesimal analog of the conventional notion of connection. The connection here is

referred to as the covariant derivative.
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Fig. 2.3 Parallel transport of a vector in a manifold

The notion of covariant derivative is closely tied to the notion of parallel transport

along a curve. The parallel transport operator P r
x→y : Tγ(x)M → Tγ(y)M associated with

the curve γ : I →M with θ ∈ I, γ(0) = x′, and u,w ∈ Tx′M is given by

Gγ(t)(P
r
0→tγ(v), P r

0→tγ(w)) = Gx′(u,w) (2.9)

The covariant derivative of a vector field E ∈ X(M) in the direction ω is related to the

parallel transport operator by

∇ωE =
d

dt
P t
ε→0E(γ(t))

∣∣∣∣∣
t=0

(2.10)

If vector field E satisfies the condition P t
ε→0E(γ(x)) = E(γ(y)), the field ~t is said to be

parallel along r. The parallelism term in terms of covariant derivative is ∇γ̇E = 0.

A geodesic in manifoldM with connection∇ and associated parallel translation operator

PG, is a curve γ such that γ̇ is parallel translated along r itself.

P t
Gs→γ(γ̇(s)) = γ̇(t) (2.11)
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Exponential Mapping

In Riemannian geometry, an exponential map refers to a mapping from a subset of the

tangent space TpM of a Riemannian manifold M to the manifold itself. This exponential

map is determined by the canonical affine connection established by the Riemannian metric.

The geodesic equation, given by [17]

ẍk +
∑
i,j

Γkij(γ)ẋiẋj = 0 (2.12)

describes the behavior of geodesics on the manifold. For any vector V in TxM , there

exists an interval I around the origin O and a unique geodesic γ(t, x) : I → M such that

γ(0) = x and γ̇ = v. The exponential map, denoted as exp : TxM →M , maps each vector

v in the tangent space to a point on the manifold, denoted as expx v, given by γ(1;x, v).

A manifold M is said to be geodesically complete if the domain of the exponential map,

denoted as Exp, covers the entire tangent space TxM for every x in M .

Lograthimc Mapping

In Riemannian geometry, it is the inverse of the exponential mapping, such that it returns

a vector which belongs to the tangent space of M which is the direction vector between two

point in the manifold.

Fig. 2.4 Exponential Mapping and Logarithmic Mapping on surface of S2

manifold
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2.3 Lie Groups and Lie Algebras

A Lie group is a smooth manifold that also carries a group structure whose product and

inversion operations are smooth as maps of manifolds. These structures naturally appear

when describing physical symmetries.

A Lie group is a group whose elements can have a continuous real number parametriza-

tion, like the rotation group SO(3), which can have the Euler angles as its parametrization.

An analytic real or complex manifold that is also a group, such that the group operations

multiplication and inversion are analytic maps, is referred to as a Lie group in a more

formal sense.

2.3.1 Group Axioms

1. Closure: If a, b ∈ G, then φ(a, b) ∈ G.

2. Associative: If a, b, c ∈ G, then φ(a, φ(b, c)) = φ(φ(a, b), c).

3. Identity: If a ∈ G, then there exists e ∈ G such that φ(a, e) = φ(e, a) = a.

4. Inverse: If a ∈ G, then there exists a unique element a−1 ∈ G such that φ(a, a−1) =

φ(a−1, a) = e.

2.3.2 Lie Group

A Lie group is a smooth manifoldM with a groupG structure that is concurrently consistent

with its manifold M structure in the sense of group multiplication and group inversion. The

group identity element is a point e at G. Every point of the manifold in a Lie group has the

same appearance, so every tangent space at every point is the same. The group structure

mandates that each element’s composition stays on the manifold, and that each element

also has an inverse in the manifold. Calculus on groups is possible thanks to Lie groups,

which connect the local characteristics of smooth manifolds.
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2.3.3 Group Actions

Lie groups possess the ability to alter the elements of other sets, leading to transformations

such as rotations, translations, scaling, and combinations thereof. For a valid group action,

it must satisfy the axioms of identity and compatibility.

2.3.4 Lie Algebra

If we have a point X(t) that moves on a manifold M associated with a Lie group, the

velocity of this point belongs to the tangent space of the manifold, denoted as TxM . The

smoothness of the manifold ensures the presence of a unique tangent space at each point.

The tangent space at the identity element of the Lie group is known as the Lie algebra of

that particular group. It is important to note that every Lie group is accompanied by its

own corresponding Lie algebra.

2.3.5 Exponential Map and Logarithmic Map

The exponential map is a mapping that establishes a diffeomorphism between the Lie

algebra and the Lie group. It allows us to convert elements from the Lie algebra to cor-

responding elements in the Lie group. Conversely, the inverse of the exponential map is

known as the logarithmic map, which enables us to go from the Lie group back to the Lie

algebra.

In our research, calculating the exponential mapping directly poses challenges as it ne-

cessitates a deep understanding of advanced concepts in Differential Geometry. As a result,

we opt for a shortcut by leveraging the action exerted by Lie groups on the configuration

manifold considered in our study. This approach provides us with a more accessible way

to incorporate the effects of Lie groups in our analysis.
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Fig. 2.5 Working of Lie Groups and Lie Algebra

Rotational Lie Groups

This group is the subset of the General Linear Group whose Group Action represents the

rotations induced in any physical system. The Rotational Groups are n×n matrices where

n is the number of rotation axes. The Rotational group may be of n dimensions, but the

rotations in 2 and 3 dimensions are important.

Uni-axial Rotation Groups or SO(2)

The following transformation of the joint coordinates results from the uniaxial joint rotation

in a single Cartesian plane around a perpendicular axis, for example, the x−y plane about

the z axis with rotation angle θ:

SO(2) =

cos θ − sin θ

sin θ cos θ


Lie Algebra:

so(2) =


0 −t

t 0

 , t ∈ R
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Exponential Map:

exp


0 −θ

θ 0


 = γθ(1) =

cos tθ − sin tθ

sin tθ cos tθ


Three-axial Rotation Groups or SO(3)

The group SO(3) is made up of rotation matrices or special orthogonal matrices in 3D space

that are subject to matrix multiplication. In all groups SO, inversion and composition are

accomplished through transposition and product (n). The lie algebra of the group is defined

by angular velocities ωx, ωy, ωz.

[ω] =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


Exponential Map:

R = exp([ω]θ) ∈ SO(3), where R is the rotation matrix.

R = I + [ω] sin(θ) + [ω]2(1− cos(θ))

Logarithm:

θ[ω] = log(R)θ(R−R>)
1

2 sin(θ)

Where,

θ = cos−1
(

trace(R)− 1

2

)
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2.4 Kalman Filter for Estimation on Manifolds

The Kalman filter is a recursive algorithm that estimates the state of a dynamic system from

a series of noisy measurements. It is widely used in various fields, including control systems

and robotics, for state estimation. When dealing with systems evolving on manifolds, such

as rotations or orientations, a modified version of the Kalman filter, known as the Extended

Kalman Filter (EKF) or the Unscented Kalman Filter (UKF), is often employed.

2.4.1 Mathematical Background

Consider a dynamic system evolving on a manifold M with state x ∈M . The state evolves

according to a dynamic model, and measurements z related to the state are obtained

with noise. The Kalman filter formulates the state estimation problem using the following

equations:

State Prediction

The prediction of the state is given by the system dynamics:

x̂k|k−1 = f(x̂k−1|k−1, uk−1)

where f is the state transition function, x̂k|k−1 is the predicted state, x̂k−1|k−1 is the previous

state estimate, and uk−1 is the control input.

Error Covariance Prediction

The error covariance matrix is predicted using the Jacobian of the state transition function:

Pk|k−1 = Ak−1Pk−1|k−1A
>
k−1 +Qk−1
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where Ak−1 is the Jacobian of f with respect to the state, Pk−1|k−1 is the error covariance

matrix of the previous estimate, and Qk−1 is the process noise covariance.

Measurement Prediction

The predicted measurement is obtained using the measurement model:

ẑk|k−1 = h(x̂k|k−1)

where h is the measurement function.

Kalman Gain Calculation

The Kalman gain is computed to determine the weight of the measurement in the state

correction:

Kk = Pk|k−1H
>
k (HkPk|k−1H

>
k +Rk)

−1

where Hk is the Jacobian of the measurement function, and Rk is the measurement noise

covariance.

State Update

The state is updated based on the measurement and the Kalman gain:

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1)

Error Covariance Update

The error covariance matrix is updated using the Kalman gain:

Pk|k = (I −KkHk)Pk|k−1
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where I is the identity matrix.

2.4.2 Application to Manifolds

When dealing with state spaces that are manifolds, the standard Kalman filter formulation

may not be directly applicable due to the non-Euclidean nature of the manifold. In such

cases, the Extended Kalman Filter (EKF) or the Unscented Kalman Filter (UKF) is often

used to linearize or approximate the manifold.

The EKF linearizes the state transition and measurement functions, allowing the use

of the standard Kalman filter equations. The UKF, on the other hand, avoids linearization

by approximating the probability distribution of the state using a set of carefully chosen

sample points, known as sigma points.

For example, when dealing with rotational manifolds, such as SO(3), the state space can

be parametrized using unit quaternions, and the EKF or UKF can be applied to estimate

the quaternion states.

The choice between EKF and UKF depends on the specific characteristics of the man-

ifold and the desired trade-off between accuracy and computational complexity.

In summary, the Kalman filter and its variants provide powerful tools for state estima-

tion on manifolds, with the choice of the specific variant depending on the nature of the

manifold and the application requirements.

2.5 Summary

In this chapter, we covered the fundamental concepts necessary for grasping the essentials

of Manifolds and Kalman Filter. Additionally, we explored the workings of Lie Groups,

particularly focusing on Rotational Lie Groups, which will play a crucial role in our formu-

lation. Prior to delving into the formulation itself, we will establish the methodology for

expressing dynamics on manifolds. The subsequent chapter will introduce the formulation

of filter, with a specific emphasis on the Spherical Manifold.
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Chapter 3

Estimation of Spherical Pendulum

Dynamics using Unscented Kalman

Filter on Manifolds

3.1 Introduction

In this chapter, we explore the application of the Unscented Kalman Filter (UKF) on

parallelizable manifolds for the estimation of the dynamics of a spherical pendulum[9]. The

spherical pendulum serves as a representative example of systems evolving on manifolds,

particularly the two-sphere manifold.

3.2 Problem Formulation

The set of all points in the Euclidean space R3, lying on the surface of the unit ball about

the origin, belongs to the two-sphere manifold, denoted as S2 = {x ∈ R3 | ‖x‖2 = 1}.

Systems such as a spherical pendulum evolve on the two-sphere manifold.
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3.3 Simulation of Spherical Pendulum Dynamics

We initiated our simulation by defining the parameters of the system and setting up the

dynamic equation for the spherical pendulum on the special orthogonal group SO(3) man-

ifold. The model parameters included the total simulation time T , model frequency f ,

and model noise standard deviation model noise std. We considered a spherical pendulum

with the following characteristics:

• Length of the wire (L): 1.3 meters

• Gravity constant (g): 9.81 m/s2

The integration step dt was determined based on the chosen frequency to ensure accurate

numerical simulation.

3.3.1 Data Generation and Trajectory Simulation

We generated simulated data representing the behavior of the spherical pendulum system

over time. The simulation involved the following key steps:

1. Initialization: We initialized the simulation environment and defined the model

parameters.

2. Model and Simulation: We employed the Geometric Ito-Taylor 1.5 method to

numerically simulate the true states and noisy inputs of the spherical pendulum

system. The simulation incorporated model noise to account for uncertainties and

external disturbances.

3. Plotting: We visualized the trajectory of the spherical pendulum on the two-sphere

manifold S2 and overlaid it on a spherical surface. The simulated trajectory repre-

sented the motion of the pendulum over the specified simulation time.
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Fig. 3.1 Trajectory on S03 Manifold

3.4 Simulation Results

In this section, we present the results of our MATLAB simulation of a spherical pendulum

equipped with a geometrically consistent tuned mass damper (TMD) using the Geometric

Ito-Taylor 1.5 method. We explore the behavior of the system on the two-sphere manifold

S2 and analyze its response in terms of orientation and position over time. The simulation

results demonstrate the dynamic behavior of a spherical pendulum equipped with a geo-

metrically consistent tuned mass damper. Several key observations can be made from the

generated data:

1. Spherical Pendulum Motion: The trajectory of the spherical pendulum on S2

illustrates the complex and chaotic motion of the system. The motion includes rota-

tions and oscillations, showcasing the nonlinear nature of the dynamics.

2. Effect of Model Noise: The inclusion of model noise in the simulation accounts
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for real-world uncertainties and disturbances. This noise influences the pendulum’s

motion, introducing variations in orientation and position.

3. Tuned Mass Damper: The simulation can incorporate the behavior of a geometri-

cally consistent tuned mass damper (TMD). The TMD’s role is to mitigate excessive

structural motions, and its effectiveness can be analyzed by comparing the system’s

response with and without the TMD.

Overall, this simulation serves as a valuable tool for understanding the behavior of com-

plex mechanical systems like spherical pendulums equipped with geometrically consistent

TMDs. It provides insights into the system’s response to external forces and disturbances

and can aid in the development and optimization of TMD strategies for structural control.

3.5 Model and Simulation

We utilize the UKF-M methodology, a novel approach for implementing the Unscented

Kalman Filter on parallelizable manifolds. The model is based on the Euler equations of

pendulum motion. The simulation involves generating true states and noisy inputs, as well

as simulating landmark measurements based on the true states.

3.6 Filter Design and Initialization

The state of the system is embedded in SO(3)×R3 with left multiplication. The propaga-

tion noise covariance matrix, measurement noise covariance matrix, and initial uncertainty

matrix are appropriately defined. The UKF is initialized with the chosen parameters and

state.
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3.7 Filtering

The UKF proceeds with a standard Kalman filter loop, involving state propagation and

update steps based on received measurements. The estimates of the state and covariance

are recorded along the trajectory.

3.8 Results

Fig. 3.2 Position(m)

The results showcase the accuracy, robustness, and consistency of the UKF in estimating

the position of the spherical pendulum, even in the presence of strong initial errors. Plots

depict the position of the pendulum as a function of time, along with 3σ interval confidence,

demonstrating the convergence to the true state and the consistency of the filter.
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Fig. 3.3 Position of Pendulum in XZ Plane

Fig. 3.4 Position of Pendulum in XZ Plan
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Fig. 3.5 Position Error

Fig. 3.6 Position Error
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3.9 Conclusion

This chapter demonstrates the successful application of the UKF on parallelizable manifolds

for estimating the position of a spherical pendulum. The filter exhibits accuracy, robustness,

and consistency, laying the groundwork for further exploration and application in diverse

scenarios.
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Chapter 4

Conclusion and Future Work

The exploration of state and parameter estimation on manifolds using Lie groups has

opened up exciting avenues for future research and practical applications, especially in

the realms of structural engineering and control. This chapter outlines potential future

directions and use cases, pointing towards the continued evolution and application of this

innovative approach.

4.1 Advanced State Estimation Techniques

Future research endeavors can delve into the development of advanced state estimation

techniques, further harnessing the capabilities of the Lie group framework. This entails

refining algorithms and methodologies for precise estimation of dynamic system states

residing on manifolds such as the Special Orthogonal Group SO(3) or other Lie groups.

Improved accuracy and robustness in state estimation can empower more effective control

strategies for intricate systems.
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4.2 Parameter Estimation on Manifolds

Extending state estimation to parameter estimation stands out as a promising avenue for

future exploration. Structural systems often feature parameters with variability or uncer-

tainty, such as mass distributions, material properties, and damping coefficients. Future

research can focus on developing methods that concurrently estimate both the system state

and its parameters, taking into account the inherent manifold structure. This holistic ap-

proach enhances our ability to model and control complex systems effectively.

4.3 Retuning Strategies

A practical application of state and parameter estimation on manifolds lies in the field of

detuning – the adjustment of system parameters, such as damping properties of tuned mass

dampers, to optimize structural performance. Subsequent research can investigate how

Lie group-based estimation techniques contribute to adaptively retuning systems, enabling

them to counteract changing environmental conditions and ensuring structural stability

and safety.

4.4 Adaptive Tuning of TMDs

The concept of adaptive tuning involves dynamically adjusting the parameters of a structure

or its control systems in response to varying loads or external factors. Lie group-based esti-

mation is poised to play a pivotal role in developing adaptive tuning strategies for structures

equipped with tuned mass dampers. These strategies can optimize damper performance in

real-time, reducing structural vibrations and enhancing overall system efficiency.
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4.5 Health Monitoring and Maintenance

State and parameter estimation techniques on manifolds find applications in health mon-

itoring and maintenance of structures. Continuous monitoring of a structure’s state and

parameters, including those of tuned mass dampers, facilitates the detection of anomalies

and degradation. This proactive approach to maintenance can significantly extend the

lifespan of structures, bolstering safety and structural integrity.

4.6 Conclusion

As we embark on these future research directions and applications, the integration of Lie

groups into state and parameter estimation methodologies promises to revolutionize our

approach to structural engineering and control. These endeavors hold the potential to

create more resilient, adaptive, and efficient systems across various domains.
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